AI算力注入边缘 视频监控看见新时代

人工智能
2018
12/27
14:13
中国安防展览网
分享
评论

在过去几年里,前端摄像头采集数据,并将数据传输到后端服务器、NVR或者云端进行存储以及智能分析,这是安防行业传统的做法,但随着视频数据量迅猛递增,以及网络传输带宽的压力和成本问题,安防行业开始寻找新的解决方案,边缘计算和边缘存储的应用由此开始。

边缘计算以其安全高效的特点在当下获得众多企业和行业关注。不同于依靠多个数据中心的云计算,边缘计算是指在数据源处完成的计算,具有低时延、安全、灵活性强的特点。海康威视CEO胡扬忠曾表示:“将AI算力注入边缘,赋能边缘智能是大势所趋。”作为边缘计算应用典型之一,安防视频监控领域不容轻视。

相比于传统视频监控,边缘计算+视频监控,通过对视频图像进行预处理,去除图像冗余信息,使得部分或全部视频分析迁移到边缘处,由此降低对云中心的计算、存储和网络带宽需求,提高设备响应速度,相当于在边缘直接对视频图像进行处理分析。边缘计算弥补了云计算响应不及时、功耗高等问题,并满足了安防行业在实时业务、安全与隐私保护等方面的需要,因此被广泛应用。如果将云计算看成视频监控1.0时代的话,那么边缘计算则是2.0时代。

根据CB Insights的市场规模量化工具,到2022年,全球边缘计算市场规模预计将达到67.2亿美元。而根据Research and Markets发布的报告,边缘计算的市场规模复合年均增长率高达35.2%。当然,安防也不例外,目前来看,边缘计算正在监控领域孕育着巨大的市场。

安防业龙头海康和大华均相继发布边缘计算产品与解决方案,例如海康“明眸”系列产品、大华边缘计算节点联网方案等。此外,除了海康和大华,华为、宇视科技等领军企业也有跟进部署边缘计算技术。部分监控厂商、VC创业公司也已将 学习技术应用于终端摄像机中,车牌识别与人脸识别等功能都已实现在前端进行。那么,2019年安防企业还会将边缘计算拓展到哪些应用领域?值得期待!

结语:从上文来看,边缘计算确实有效弥补了云存储的不足,但需要注意的是,纯边缘存储也有其缺陷,例如发生本地灾难时容易丢失数据、难以在站点之间进行边缘存储协作、数据被盗风险较大且无法搜索,并且由于缺乏本地IT而极难进行大规模管理等。

如是观之,在安防大数据时代,边缘计算与云计算技术还是需要互相补充,云计算提供强大的全局结构化数据推理分析和资源管控力,边缘计算则提供快速、敏捷、高效、精准的实时响应。两者共同推动安防行业迈入全新层次。

【来源:中国安防展览网】

THE END
广告、内容合作请点击这里 寻求合作
ai
免责声明:本文系转载,版权归原作者所有;旨在传递信息,不代表 的观点和立场。

相关热点

人脸识别、语音助手、智能识图、AI美颜、智慧识屏、随行翻译……2018年以来,手机行业搭载AI技术的新卖点层出不穷,究竟哪些才是最常使用的功能?哪些功能是徒增成本、并无实用的“花瓶”?
人工智能
互联网虽然寒冬,但人工智能热度不减,成果不断。今年所有的互联网公司,都在ALL in AI。百度、腾讯、阿里巴巴、京东等互联网巨头甚至都在美国硅谷大肆高薪挖掘人工智能人才。
人工智能
人工智能已经取得了显著的进步,但事实上,刚刚起步的技术和有偏见的数据也不可避免地会产生人类未曾想到的错误。这就是为什么审查人工智能故障是必要和有意义的。
人工智能
近日,中国信息通信研究院副院长何桂立在由中国通信工业协会、中国通信工业协会物联网应用分会主办的“中国物联网产业赋能高峰会”上共同探讨了物联网的演进与发展。
人工智能
腾讯AI Lab团队在arXiv发表论文,通过对AI进行训练,并与《王者荣耀》顶级人类玩家PK,最后获得了48%的胜率。
人工智能

相关推荐

1
3
Baidu
map