神奇!AI可在1.2秒内判断你的愤怒

人工智能
2019
02/12
16:04
千家网
分享
评论

亚马逊的Alexa可根据语音判断你需要的选择,但是人工智能(AI)却可以感知你是否生气。麻省理工学院媒体实验室的分支机构Affectiva的声联网系统,可在短短1.2秒内从音频数据中分辨出你的愤怒。无论是什么语言,这个时间刚好超过人类感知愤怒所需的时间。

AI可分辨人类的愤怒

Affectiva的研究人员在Arxiv.org上最新发表的一篇论文中描述了这一现象(“从声音表征中转移学习,用于语音中的愤怒检测”)。它建立在语音和面部数据的基础上,并建立相关的情感档案。今年,该公司与Nuance合作开发了一种车载人工智能系统,可以从摄像头的反馈中检测驾驶员疲劳的迹象。在2017年12月,它推出了语音API,该API使用语音识别功能,诸如大笑、愤怒等情绪,以及音量、音调、速度和停顿。

论文的共同作者写道:“利用 学习网络的力量进行情感识别的一个重要问题是, 网络所需的大量数据,与小规模的语音数据之间的不匹配。经过训练的愤怒检测模型提高了性能,并能很好地概括各种行为,从而引发情绪言语的数据集。此外,我们提出的系统具有较低的延迟,适用于实时应用。”

什么是声联网?

SoundNet(声联网)由一个卷积神经网络(一种通常用于分析视觉图像的神经网络)组成,它在视频数据集上进行训练。为了让它识别言语中的愤怒情绪,研究小组首先搜集了大量的普通音频数据——200万段视频,或者仅仅相当于一年多的时间——使用另一种模型生成的ground truth。然后,他们使用一个更小的数据集IEMOCAP对其进行微调,该数据集包含12个小时的带注释的视听情感数据,包括视频、语音和文本转录。

为了测试人工智能模型的通用性,该团队评估了它的英语训练模型用于汉语普通话语言的情感数据(普通话情感语料库,简称MASC),他们的报告说,它不仅很好地推广到英语语音数据,而且对汉语数据也很有效——尽管性能略有下降。

  AI可识别语音情感模型

研究人员说,他们的成功证明了一种“有效的”和“低延迟的”语音情感识别模型,可以通过转移学习得到显著改善。转移学习是一种技术,它利用人工智能系统在之前标注过的样本的大数据集上训练,在一个数据稀疏的新领域中引导训练——在这种情况下,人工智能系统能通过训练分类一般声音。

这一结果是有希望的,因为尽管情感语音数据集很小,而且获取起来也很昂贵,但是大量的自然声音事件数据集是可用的,比如用于训练SoundNet的数据集或谷歌的音频集。仅这两个数据集就有大约1.5万个小时的标记音频数据。“愤怒分类有很多有用的应用,包括对话界面和社交机器人、交互式语音应答系统、市场研究、客户代理评估和培训,以及虚拟现实和增强现实。”

他们把开发其他大型公共语料库的工作留给了未来,并为相关的语音任务训练人工智能系统,比如识别其他类型的情感和情感状态。相信,在未来AI将发挥更多的作用,你认为未来的AI还能应用在哪些领域呢?

【来源:千家网】

THE END
广告、内容合作请点击这里 寻求合作
ai
免责声明:本文系转载,版权归原作者所有;旨在传递信息,不代表 的观点和立场。

相关热点

年底裁员潮里,AI相关岗位依然处在不败之地。
人工智能
联合国世界知识产权组织(WIPO)于 1 月 31 日发布的一份研究报告指出,中国和美国在全球人工智能领域的竞赛中位居前列。该组织总干事称,中国在知识产权领域不容小觑。
人工智能
最后直播的一场比赛中,DeepMind限制了AlphaStar的游戏视角,并在没有测试的前提下与MANA进行比赛,让人类终于赢了一场。最终总成绩定格在10-1。
业界
近日,在《麻省理工科技评论》、DeepTech深科技联合主办的“全球新兴科技峰会”后,英伟达副总裁Kimberly Powell(金佰利·鲍威尔)接受了包括第一财经在内的媒体采访。
业界
中国人工智能学会、国家工信安全中心、华夏幸福产业研究院等四大权威机构、历史半年完成的重磅报告,给你一个全新的角度了解中国AI产业和学术的创新现状。
人工智能

相关推荐

1
3
Baidu
map