ChatGPT 一年电费高达 2 亿元,AI 为何如此耗电?

2024
04/14
20:22
分享
评论

 

(来源:由 AI 生成的图片)

随着 ChatGPT 引发新一轮人工智能(AI)热潮,而其背后带来的能耗问题也持续引发关注。

今年 4 月 10 日,芯片巨头 Arm 公司 CEO 哈斯(Rene Haas)公开表示,包括 ChatGPT 在内的 AI 大模型需要大量算力,预计到 2030 年,AI 数据中心将消耗美国 20% 至 25% 的电力需求,相比今天的 4% 大幅增加。

公开数据显示,目前,ChatGPT 每天需要处理超过 2 亿次请求,其电量消耗高达每天 50 万千瓦时。一年时间,ChatGPT 光电费就要花 2 亿元人民币。

这意味着,ChatGPT 日耗电量是普通家庭的 1.7 万倍以上。(美国商业用电一度约为 0.147 美元也就是 1.06 元,相当于一天 53 万元)

据荷兰咨询机构负责人 Alex de Vries 预计,到 2027 年,AI 行业每年将消耗 850 亿 ~1340 亿千瓦时的电力,相当于瑞典或荷兰一个欧洲国家一年的总用电量。

马斯克判断,电力缺口最早可能会在 2025 年发生," 明年你会看到,我们没有足够电力来运行所有的芯片 "。

OpenAI CEO 奥尔特曼(Sam Altman)也预计,AI 行业正在走向能源危机,未来 AI 技术发展将高度依赖于能源,人们也需要更多的光伏和储能产品。

这一切都显示出,AI 即将引爆全球新一轮 " 能源战争 "。

不止是芯片,AI 还被能源 " 卡脖子 "

过去 500 多天里,ChatGPT 引发全球新一轮 AI 大模型和算力需求热潮。

微软、谷歌、Meta、OpenAI 等多家全球科技巨头开始疯抢 AI 芯片,甚至亲自下场 " 造芯 ",总规模超过数十万亿元美金。

实际上,AI 本质上是一种计算机技术和处理信息的技术,背后则需要大量 GPU 芯片,更底层则是大量电能、水力、风能、资金等资源的支持。

早在 1961 年,在 IBM 公司工作的物理学家拉尔夫 · 兰道尔(Rolf Landauer)发表了一篇论文,提出了后来被称为 " 兰道尔原理 "(Landauer's Principle)的理论。

这一理论认为,计算机中存储的信息发生不可逆的变化时,会向周围环境散发一点点热量,其散发的热量和计算机当时所处的温度有关——温度越高,散发的热量越多。

兰道尔原理连接起了信息和能量。更具体地说,它连接到了热力学第二定律上。因为逻辑上不可逆的信息处理操作,也就意味着湮灭了信息,这会导致物理世界中熵的增加,从而消耗能量。

这一原理自提出以来遭受过不少质疑。但近十几年来," 兰道尔原理 " 已被实验证明。

2012 年,《自然》杂志发表了一篇文章,研究团队首次测量到了一 " 位 "(bit)数据被删除时释放的微量热量。后来的几次独立实验,也都证明了 " 兰道尔原理 "。

过去 10 多年间,现代电子计算机在计算时实际消耗的能量,是兰道尔理论值的数亿倍。而科学家们一直在努力寻找更高效的计算方法,以降低成本。

如今,AI 大模型爆发,它确实需要大量计算。因此,AI 不止被芯片 " 卡脖子 ",还被能源 " 卡脖子 "。

马斯克近期也在 " 博世互联世界 2024" 大会上表示,一年多以前,短缺的是芯片,明年你会看到电力短缺,无法满足所有芯片的需求。

中国科学技术信息研究所人工智能中心副主任李修全也表示,近年来, AI 大模型规模、数量都在高速增长,也带来对能源需求的快速增加。尽管短期内还不会很快出现 " 缺电 " 等问题,但未来大规模智能化时代来临后的能源需求激增不容忽视。

AI 大模型质量的关键在于数据、算力和顶尖人才,而高算力的背后,是靠着数万张芯片昼夜不停的运转支撑。

具体来说,AI 模型算力的工作过程大致可以分为训练、推理两个阶段,能源消耗也是如此。

其中,在 AI 训练阶段,首先需要收集和预处理大量的文本数据,用作输入数据;其次,在适当的模型架构中初始化模型参数,处理输入的数据,尝试生成输出;最后,通过输出与预想之间的差异反复调整参数,直到模型的性能不再显著提高为止。

从训练 15 亿参数的 GPT-2,到训练 1750 亿参数的 GPT-3,OpenAI 模型背后的训练能耗十分惊人。公开信息称,OpenAI 每训练一次需要 128.7 度电,相当于 3000 辆特斯拉同时跑 32 公里。

据研究机构 New Street Research 估计,仅在 AI 方面,谷歌就需要大约 40 万台服务器,每天消耗 62.4 吉瓦时,每年消耗 22.8 太瓦时的能源。

而在推理阶段,AI 则会先加载已经训练好的模型参数,预处理需要推理的文本数据,再让模型根据学习到的语言规律生成输出。谷歌称,从 2019 年到 2021 年,AI 相关能源消耗 60% 都来自推理。

据 Alex de Vries 估算,ChatGPT 每天大概要响应大约 2 亿个请求,耗电量超过 50 万度,按照一年电费就是 2 亿元人民币,比每个美国家庭的平均日用电量高 1.7 倍。

SemiAnalysis 报告称,使用大模型进行问题搜索所消耗的能源是常规关键词搜索的 10 倍。以谷歌为例,标准谷歌搜索使用 0.3Wh 电力,而大模型每次互动的耗电量为 3Wh。如果用户每次在谷歌搜索都使用 AI 工具,每年大约需要 29.2 太瓦时的电力,也就是每天约 7900 万度。这相当于给全球最大的摩天大楼,迪拜的哈利法塔,连续供电超过 300 年。

另据斯坦福人工智能研究所发布的《2023 年 AI 指数报告》显示,每次 AI 搜索的耗电量大约为 8.9 瓦时。相比普通谷歌搜索,加入 AI 的单次耗电量几乎是一般搜索的 30 倍。而一个高达 1760 亿参数的模型,光是前期训练阶段就得用掉了 43.3 万度电,相当于美国 117 个家庭一年的用电量。

值得注意的是,在 Scaling Law(缩放规律)之中,随着参数规模不断跃升,大模型性能也不断提升,而对应的是,能耗也会越来越高。

因此,能源问题已经成为 AI 技术持续发展的关键 " 桎梏 "。

GPT 每天消耗 50000 升水,电和水是 AI 两大能源需求

AI 不仅是 " 耗电狂魔 ",更是 " 吞水巨兽 "。

其中,在电力方面,除了上述信息外,据国际能源署 ( IEA ) 数据显示,2022 年,全球数据中心消耗约 460 太瓦时的电量 ( 相当于全球总需求的 2% ) ,随着生成式 AI 飞速发展,这一数字到 2026 年可能膨胀至 620 至 1050 太瓦时。

Alex de Vries 预计,到 2027 年,AI 服务器所消耗的用电量将等同于荷兰全国的能源需求量。最坏的情况就是,仅谷歌一家公司的 AI 就可以消耗与爱尔兰等国家一样多的电力。

IBM 高级副总裁达里奥 · 吉尔曾表示,"AI 能耗 " 是非常重要的挑战。生成式 AI 的高性能服务器的持续运行,将导致数据中心一半以上的电力消耗都被 AI 占据。据悉,预计到 2025 年,AI 业务在全球数据中心用电量中的占比将从 2% 猛增到 10%。

那么,水能呢?大模型背后需要数据中心、云基础设施的支持,那就需要大量的 " 液冷 " 进行散热。

得克萨斯大学的一份研究指出,作为 ChatGPT 背后的重要支持力量,微软的 Microsoft Azure 云数据中心光是训练 GPT-3,15 天就用掉将近 70 万升的水,相当于每天花销约 50000L 水。

同时,ChatGPT 每回答 50 个问题就要消耗 500 毫升水。公开信息称,2022 年微软用水量达到 640 万立方米,比 2500 个奥林匹克标准游泳池的水量还多。

美国加州大学河滨分校副教授任绍磊团队预计,到 2027 年,全球 AI 可能需要 4.2-66 亿立方米的清洁淡水量,这比 4-6 个丹麦、或二分之一的英国的一年取水总量还要多。

除了数据中心,内置的 GPU 芯片也是能源消耗的重点领域之一。今年 3 月,英伟达发布史上性能最强 AI 芯片—— Blackwell GB200,宣称是 A100/H100 系列 AI GPU 的继任者,性能相比 H100 提升 30 倍,但能耗却降低了 25 倍。

上个月,黄仁勋的一句 "AI 的尽头是光伏和储能 " 更是在网络疯传。尽管有网友扒出原视频称,黄仁勋本人并未说过这句话,更没有提及 " 光伏和能源 ",但 AI 能耗严重,却是摆在公众面前的事实。

国际能源机构(IEA)在一份报告中强调了这个问题,全球 AI 数据中心的耗电量将是 2022 年的十倍,并指出部分原因在于 ChatGPT 这样的大模型所需的电力,远高于谷歌等传统搜索引擎。

不过,值得注意的是,由于科技巨头们并未正式披露过 AI 使用中的电力消耗数据,因此,目前关于 AI 耗电量的数据多为估算,并不一定是非常准确的数据。美国信息技术与创新基金会(ITIF)曾指出,个别不准确的研究高估了 AI 能耗。AI 训练是一次性事件,它的使用是长期过程。人们应关注 AI 能耗的长期影响,并非爆发式增长。

有专家认为,目前大模型训练成本中 60% 是电费,能源开支已经严重制约着大模型的迭代升级。

金沙江 主管合伙人朱啸虎近日也表示,可控核聚变实现前,我们并没有足够的算力实现真正的 AGI。帮人类降低 90% 的工作可能未来 3 到 5 年可以实现,但最后的 10% 可能需要大量的算力和能耗。

如何解决 AI 能耗之困?硬件优化和核聚变或是重要手段

虽然黄仁勋也非常担忧能源供给,但他却给出了一个更乐观的看法:过去 10 年,AI 计算提高了 100 万倍,而它消耗的成本、空间或能源并未增长 100 万倍。

美国能源情报署发布的长期年度展望中估计,美国目前电力需求的年增长率不到 1%。而按新能源公司 NextEra Energy CEO 约翰凯彻姆(John Ketchum)的估计,在 AI 技术的影响下,这一电力需求年增长率将加快至 1.8% 左右。

波士顿咨询集团的报告则显示,2022 年,数据中心用电量占美国总用电量(约 130 太瓦时)的 2.5%,预计到 2030 年将增加两倍,达到 7.5%(约 390 太瓦时)。这相当于约 4000 万个美国家庭的用电量,即全美三分之一家庭的用电量。该集团还预计,生成式 AI 将至少占美国新增用电量的 1%。

这意味着,即使数据中心、AI 新增用电量并不小,但还远不到毁天灭地的地步。

而在成本方面,国际可再生能源署报告指出,过去十年间,全球风电和光伏发电项目平均度电成本分别累计下降超过了 60% 和 80%。上述业界人士也介绍说," 光伏的综合成本跟火电差不多,风电一半区域的综合成本比火电低了。"

因此,随着 AI 技术一路狂飙,我们又将如何应对即将到来的能源需求热潮?

媒体 App 根据一些行业专家的观点总结来看,目前解决 AI 能耗问题有两种方案:一是可以通过大模型或 AI 硬件优化降低能耗;二是寻找新的能源,比如核聚变、裂变资源等,以满足 AI 能耗需求。

其中,在硬件优化方面,对于能耗较高的万亿级 AI 大模型,可以通过算法和模型优化,压缩模型 token 大小及复杂度,以降低能源消耗规模;同时,企业也可以持续开发和更新能耗更低的 AI 硬件,如最新的英伟达 B200,AI PC 或 AI Phone 终端等;此外,通过优化数据中心的能效,提高电源使用效率,以降低能源消耗。

对此,中国企业资本联盟副理事长柏文喜表示,未来,还需要进行技术创新和设备升级,以进一步提高发电效率、提高电网输送能力和稳定性、优化电力资源配置、提高电力供应的灵活性、推广分布式能源系统并减少能源输送损耗,以此来应对算力发展带来的能源需求挑战。

中国数据中心工作组(CDCC)专家委员会副主任曲海峰认为,相关行业应该要重视提升数据中心用电能效,而不是抑制它的规模。数据中心并非要减少对能源的消耗,而是要提升能源消费的质量。

而在开发核聚变能源方面,由于可控核聚变由于原料资源丰富、释放能量大、安全清洁、环保等优势,能基本满足人类对于未来理想终极能源的各种要求。

核聚变的能量来源目前主要有三种:宇宙能源,即太阳发光发热;氢弹爆炸(不受控核聚变);人造太阳(受控核聚变能源装置)。

据统计,当前世界共有 50 多个国家正在进行 140 余项核聚变装置的研发和建设,并取得一系列技术突破,IAEA 预计到 2050 年世界第一座核聚变发电厂有望建成并投入运行。

这种核聚变发电,将大大缓解全球因 AI 大模型需求造成的能源短缺情况。

2023 年 4 月,奥尔特曼就 " 未雨绸缪 ",以个人名义向核聚变初创公司 Helion Energy 投资 3.75 亿美元(约合人民币 27.04 亿元),并担任公司董事长。同时,去年 7 月,奥特特曼还通过旗下公司 AltC 与其投资的核裂变初创公司 Oklo 合并,斩获了一个估值约为 8.5 亿美元(约合人民币 61.29 亿元)的 IPO,ALCC 最新市值超过 400 亿美元。

除了奥尔特曼这种重金投资核聚变公司,亚马逊、谷歌等科技巨头则直接大手笔采购清洁能源。

据彭 * 博数据显示,仅在 2023 年,亚马逊就购买了 8.8GW(吉瓦)的清洁能源电力,已经连续第 4 年成为全球最大的企业清洁能源买家。Meta(采购 3GW)和谷歌(采购 1GW)等科技公司则位列其后。

亚马逊称,其 90% 以上的数据中心电力都来源于清洁能源产生的电力,预计能在 2025 年实现 100% 使用绿色电力。

实际上,以美国为例。清洁能源、AI、数据中心、电动 、挖矿等多种产业的增长,让原本陷入停滞的美国电力需求再度 " 起飞 "。但即使被誉为世界上 " 最大的机器 ",美国电网也似乎无法应对这突如其来的变化。

有分析师指出,美国 70% 的电网接入和输配电设施已老化,某些地区电网传输线路不足。因此,美国电网需要大规模升级,如果不采取行动,到 2030 年美国将面临一道难以逾越的国内供应缺口。

相对于美国,中国则对能源需求表达乐观态度。"AI 再耗电,中国的体量和能力足以支撑,现在不进行大规模开发,是因为没需求。" 一位风电行业人士表示,中国可规划的容量足够大,AI 要是有大量电力需求,我现在就能上项目当中去工作。

目前,中国风电、光伏产品已经出口到全球 200 多个国家和地区,累计出口额分别超过 334 亿美元和 2453 亿美元。

随着 AI 呈现爆发式增长,这场中美 AI 产业角逐,已经从大模型技术比拼,升级成为一场算力、能源、人力等多方位争夺战。

随着核聚变能源或将到 2050 年落地,人类期望终结 AI 能耗这一具有挑战性难题,进入无限发电时代。

来源:钛媒体

THE END
广告、内容合作请点击这里 寻求合作
免责声明:本文系转载,版权归原作者所有;旨在传递信息,不代表 的观点和立场。

相关热点

相关推荐

1
3
Baidu
map