Meta AI大佬:目前大多数AI方法永远不会带来真正智能

业界
2022
09/26
17:07
网易科技
分享
评论

9月26日消息,Facebook母公司Meta的首席AI科学家雅恩·勒昆(Yann LeCun)认为,目前大多数AI方法永远不会带来真正的智能,他对当今 学习领域许多最成功的研究方法持怀疑态度。

这位图灵奖得主表示,同行们的追求是必要的,但还远远不够。其中包括大型语言模型的研究,如基于Transformer的GPT-3。正如勒昆所描述的那样,Transformer的支持者们相信:“我们将所有东西标记化,并训练巨型模型进行离散预测,AI由此脱颖而出。”

勒昆解释称:“他们没有错。从这个意义上说,这可能是未来智能系统的一个重要组成部分,但我认为它缺少必要的部分。”勒昆完善了卷积神经网络的使用,该技术在 学习项目中取得了令人难以置信的成效。

勒昆还看到了该学科许多其他高度成功领域的缺陷和局限性。他坚持认为,强化学习永远也不够。像DeepMind的大卫·西尔弗(David Silver)这样的研究人员,尽管他们开发出了AlphaZero程序,掌握了国际象棋和围棋,但他们关注的是“非常注重行动的”程序,而勒昆观察到,“我们的大部分学习并不是通过采取实际行动来完成的,而是通过观察来完成的”。

现年62岁的勒昆有很强的紧迫性,他必须直面自己认为许多人可能正在奔向的死胡同,并试图引导其所在领域朝着他认为应该走的方向前进。勒昆说:“我们看到了很多关于我们应该做些什么来推动AI达到人类智能水平的说法,我认为有些想法是错误的。我们的智能机器甚至还没有达到猫的智能水平。那么,我们为什么不从这里开始呢?”

勒昆认为,不仅是学术界,AI行业也需要深刻的反思。他说,自动驾驶 群体,如Wayve这样的初创公司,认为他们只要向大型神经网络“抛出数据,就可以学到几乎任何东西”,这似乎“有点儿过于乐观了”。

勒昆称:“你知道,我认为我们完全有可能在没有常识的情况下拥有L5级自动驾驶 ,但你必须在设计方面做出努力。” 他认为,这种过度设计的自动驾驶技术将会像所有被 学习淘汰的计算机视觉程序一样,变得脆弱不堪。他说:“归根结底,将会有一种更令人满意、可能也更好的解决方案,它涉及到更好地理解世界运行方式的系统。”

勒昆希望促使人们重新思考有关AI的基本概念,他说: “你必须后退一步,然后说:‘好吧,我们建造了梯子,但我们想去月球,而这个梯子不可能把我们带到那里。’我要说的是,这就像制造火箭,我不能告诉你我们如何制造火箭的细节,但我可以提供基本原则。”

勒昆认为,AI系统需要能够推理,而他所提倡的过程是将某些潜在的变量最小化。这使得系统能够计划和推理。此外,勒昆认为应该放弃概率框架,因为当我们想要做些事情,比如捕捉高维连续变量之间的依赖性时,这很难处理。勒昆还主张放弃生成模型,因为系统将不得不投入太多的资源去预测那些很难预测的事情,可能会消耗太多的资源。 

【来源:网易科技

THE END
广告、内容合作请点击这里 寻求合作
AI
免责声明:本文系转载,版权归原作者所有;旨在传递信息,不代表 的观点和立场。

相关热点

沉浸式全息影像、虚拟数字人员工、数字藏品、虚拟营业厅、城市数字孪生、超写实数字人......
业界
6 月 22 日消息,高通技术公司今日宣布推出高通 AI 软件栈产品组合,以提升高通在 AI 和智能网联边缘领域的领先优势。
业界
据财联社消息,音乐软件Spotify发布声明称,将收购AI语音平台Sonantic。声明指出“我们已确定在我们的平台上进行文字转语音功能的数个潜在的机会。
业界
最近,追一科技发布了RoFormerV2模型,凭借追一独创的旋转位置编码技术(RoPE),全面超越了BERT、RoBERTa、Albert、Electra等当前的主流预训练模型。
业界
3 月 31 日消息,从华为获悉,华为全场景 AI 框架昇思 MindSpore 开源已有两年。
业界

相关推荐

1
3
Baidu
map